Ky. Climate Action Plan Overview

Presentation to CRERES Board of Directors

Capital Annex

February 21, 2012

Ky. Climate Action Plan

- The Council was convened in 2010 to:
 - Identify potential strategies to reduce greenhouse gas emission in KY; and
 - Educate many constituent groups of the means to reduce GHGs.
- Used a stakeholder process

Ky. Climate Action Plan Process

- Energy Strategy provided the foundation
- 27-member council appointed
- Technical Working Groups assigned
- GHG inventory and forecast document prepared

Ky. Climate Action Plan Process

- Council members approved 46 policy options from a list of 380.
- Consulting firm quantified 33 policy options in terms of \$/CO2e reduced
- A final report states the quantified results and details issues, pros, and cons of each option.

Goals and Outcomes

- Achieve a 20% reduction of GHGs below 1990 levels by 2030
 - 1990 emissions = 136.7 million metric tons of carbon dioxide equivalent [MMtCO2e]
 - 2030 Goal = 109.4 MMtCO2e
- The policy recommendations analyzed would reduce GHGs by about
 - 63.7 MMtCO2e in 2020;
 - 128.3 MMtCO2e in 2030, and
 - 1,316 MMtCO2e cumulatively over the 2011–2030 period
- The policy recommendations are projected to have a net cost of about \$11.6 billion during the period 2011–2030.

Actual and Forecasted GHGs

GHG Reduction Summary by TWG

Sector	GHG Reductions (MMtCO₂e)			Net Present	Cost-
	2020	2030	Total 2011– 2030	Value 2011–2030 (Million \$)	effective- ness (\$/tCO₂e)
Residential, Commercial, and Industrial (RCI)	19.1	38.3	408.2	\$1,220	\$3
Energy Supply (ES)	37.4	75.8	755.9	\$17,911	\$24
Transportation and Land Use (TLU)	2.8	6.3	62.4	- \$7,877	- \$126
Agriculture, Forestry, and Waste Management (AFW)	4.4	7.9	89.7	\$308	\$3.4
Cross-Cutting Issues (CCI)	Non-quantified, enabling options				
TOTAL (includes all adjustments for overlaps)	63.7	128.3	1,316.2	\$11,562	\$8.8

Agriculture, Forestry & Waste Policy Options CO2e Reduction and Cost

- •AFW-2 Expanded Use of Biomass Feedstocks for Electricity, Heat, and Steam Production
- •AFW-3a On-Farm Energy Production
- •AFW-4 In-State Liquid/Gaseous Biofuels Production
 - •(AFW-2, 3a, and 4 recommend increasing the productivity and conversion of crops, residues, and other farm resources to meet the ES, TLU, and RCI needs; the GHG reductions and costs/cost savings were accounted for in the sector where the biomass is utilized.)
- •AFW-6 Increase Productivity of Abandoned, Underutilized, and Reclaimed Lands
 - •5.8 million tons of CO2e removed in 2030
 - •\$1 per ton of CO2e removed
- •AFW-9 Landfill Methane Energy Programs
 - •2.4 million tons of CO2e removed in 2030
 - •\$1 per ton of CO2e removed

Agriculture, Forestry & Waste Policy Options CO2e Reduction and Cost

- •AFW-5b Soil Carbon Management Winter Cover Crops
 - •1.9 million tons of CO2e removed in 2030
 - •\$7 per ton of CO2e removed
- •AFW-8 Advanced MSW Reuse, Recycling, and Organic Waste Management Programs
 - •1.3 million tons of CO2e removed in 2030
 - •\$10 per ton of CO2e removed
- •AFW-7b Reforestation, Afforestation, and Restoration of Mined Lands and Other Non-forested Lands—Other Lands
 - •1.0 million tons of CO2e removed in 2030
 - •\$4 per ton of CO2e removed
- •AFW-5a Soil Carbon Management No-Till/Conservation Tillage
 - .74million tons of CO2e removed in 2030
 - •\$1 per ton of CO2e removed

Agriculture, Forestry & Waste Policy Options CO2e Reduction and Cost

- •AFW-3b On-Farm Energy Efficiency Improvements
 - .45 million tons of CO2e removed in 2030
 - -\$21 per ton of CO2e removed
- •AFW-7a Reforestation, Afforestation, and Restoration of Mined Lands and Other Non-forested Lands—Mined Lands
 - •.09 million tons of CO2e removed in 2030
 - •-\$120 per ton of CO2e removed
- •AFW-1 Forestry Management for Carbon Sequestration
 - •.07 million tons of CO2e removed in 2030
 - •\$20.3 per ton of CO2e removed

Energy Supply Policy Options

CO2e Reduction and Cost

- •ES-7 Renewable Energy Incentives and Barrier Removal
 - •22.2 million tons of CO2e removed in 2030
 - •\$20.6 per ton of CO2e removed
 - •(Assumes 75% of renewable electricity from biomass)
- •ES-6 Nuclear Energy Capacity
 - •19.5 million tons of CO2e removed in 2030
 - •\$21.3 per ton of CO2e removed
 - •(Assumes 2000 MW of Nuclear Power installed by 2025)
- •ES-11 Smart Grid and Transmission Efficiency
 - •13.5 million tons of CO2e removed in 2030
 - •\$26.6 per ton of CO2e removed
 - •(Assumes 50% smart meter deployment by 2020 and 100% by 2030)

Energy Supply Policy Options

CO2e Reduction and Cost

- •ES-1 Biomass Co-firing and Power Plant Efficiency
 - •6.6 million tons of CO2e removed in 2030
 - •\$14.1 per ton of CO2e removed
- •ES-5 Pricing Strategies for Efficiencies and Renewables
 - •5.2 million tons of CO2e removed in 2030
 - •\$27.5 per ton of CO2e removed
 - (Quantification assumes a feed-in tariff only)
- •ES-3 Advanced Fossil fuel technologies
 - •2.3 million tons of CO2e removed in 2030
 - •\$33.2 per ton of CO2e removed
 - •(Quantified 800 MW of Advanced Supercritical Coal with CCS)

Other Energy Supply Policy Options

- •ES-4 Carbon Capture, Storage, and Reuse R&D
- •ES-8 Research, Development and Demonstration of Renewable, Efficiency, and Storage Projects
- •ES-9 Policies to Support Wind Energy
- •ES-10 Shale Gas Development, Natural Gas Transportation Infrastructure, and Natural Gas Liquids
- •ES-12 Coal-to-Liquids

Residential, Commercial, and Industrial Sectors

Policy Recommendations

- Improve Building Codes for EE; Improve Code Training and Enforcement
- Provide Incentives for "Beyond-Code" EE in All Buildings and Systems
- Expand Utility DSM Programs for Electricity
- Implement Comprehensive Education, Outreach, and Marketing
- Financing Programs and Incentives for EE and CHP; PBF, Revolving Loans
- Financing Programs, Incentives for Renewables, Low-Carbon Sources
- Government Lead by Example (GLE) in State and Local Govt. Buildings
- Training and Education for Builders, Contractors, and Building Operators
- Building Commissioning and Recommissioning, Including Energy Tracking and Benchmarking, and Implement a Building Energy Labeling Program
- Implement Advanced Metering Technologies and Associated Policies for Greater Load Management, Customer Control, Awareness, Price Signaling (Moved to ES-11)

Residential, Commercial, and Industrial Sectors

Potential Benefits

- GHG reduction 38 MMtCO₂e annually by 2030
- GHG cumulative savings 400 MMtCO₂e from 2011 to 2030
- Overall cost effectiveness estimated at \$3/tCO₂e
- Some measures had cost <u>savings</u> of \$20 to \$27/tCO₂e

Transportation and Land Use Sectors

- Policy Recommendations
 - Bicycle and Pedestrian Comprehensive Plan
 - Livability and Connectivity
 - Transportation System Management
 - Transit Management and Infrastructure
 - Education and Outreach
 - Parking Management and Ride Sharing
 - Strategies for Freight Movement
 - Promotion of Locally Produced Goods and Services
 - Promotion of Alternative Transportation Fuels
 - Promotion of Clean Vehicles

Transportation and Land Use Sectors

- Potential Benefits
 - GHG emissions reduced 62.41 MMtCO₂e between
 2011 2030
 - Energy savings of 7,980 million gallons of fuel between 2011 – 2030
 - Net savings and economic benefit to the Commonwealth in the amount of \$126 per tCO₂e reduced
 - Creation of more livable, healthier communities, with direct health and cost savings to the driving public and businesses

Cross-Cutting Issues

- CCI-1 GHG inventories, forecasts, reporting and registry
- CCI-2 Education and Outreach
- CCI-3 Adaptation and Vulnerability
- CCI-4 Emission reduction, energy intensity and energy efficiency goals and standards
- CCI-5 State and local governments to lead by example
- CCI-6 Support local government efforts
- CCI-7 Financial policies
- CCI-8 Impact analysis of Federal GHG constraints

Ky. Climate Action Plan Overview

Final Report Highlights Presentation to CRERES Board

<u>energy.ky.gov</u> <u>www.kyclimatechange.us</u>

